
26 Jan 2016MeArm

on

the Raspberry Pi

Running a MeArm on a Raspberry Pi is
initially very simple. We hope to make it
simpler still with some good example code.
Right now it’s very easy to get up and
running with just a few jumper cables and
an external power supply (like our 6V 2A
power supply).

We’re assuming you have a Raspberry Pi up
and running and all of the goodies that you
need to achieve that. With that running
you’re going to want to attach the Pi to the
servos as shown below. We’re using GPIOs 4,
17, 18 and 27. These will become servos 0,1,2
and 3 respectively. We recommend you do this
whole process before building your MeArm to
save you time in calibration and also to
save you burning out your servos by sending

 Products Education Build Buy

https://mime.co.uk/blog/2016/01/26/mearm-on-the-raspberry-pi/
http://mearm.com/collections/mearm/products/mearm-mains-power-supply-6v-2-5a
https://mime.co.uk/
https://mime.co.uk/products/
https://mime.co.uk/education/
https://mime.co.uk/build/
https://shop.mime.co.uk/

them somewhere they can’t go! (file available
here)

The breadboard used in the image is just to
make things look tidy. In reality you can
just attach all the grounds and all the
power lines and wire them directly to the
power, then bring the PWM lines (the servo
control wires that come from the GPIO)
directly into the servos. Don’t connect the
6V power to the GPIO (other than connecting
the ground wire). Also it’s not advised to
draw the power for the servos through the
GPIO, they can draw up to an amp each and
the Pi isn’t set up for that. Better safe
than have to buy a new Pi!

Now we’ll need to get to the command line on
your Pi. Either boot to it or use a terminal
in your GUI. We used a fresh install of
Raspian.

pi@raspberry ~ $ git clone
git://github.com/richardghirst/PiBits.git
Cloning into ‘PiBits’…
remote: Reusing existing pack: 359, done.
remote: Total 359 (delta 0), reused 0 (delta
0)
Receiving objects: 100% (359/359), 362.62 KiB
| 311.00 KiB/s, done.

 Products Education Build Buy

http://www.mearm.io/guides/MeArm.py
https://mime.co.uk/
https://mime.co.uk/products/
https://mime.co.uk/education/
https://mime.co.uk/build/
https://shop.mime.co.uk/

Resolving deltas: 100% (154/154), done.
Checking connectivity… done.

pi@raspberry ~ $ cd PiBits/ServoBlaster/user
pi@raspberry ~/PiBits/ServoBlaster/user $
make servod
gcc -Wall -g -O2 -o servod servod.c -lm

pi@raspberry ~/PiBits/ServoBlaster/user $
sudo ./servod –idle-timeout=2000

Board revision: 2
Using hardware: PWM
Using DMA channel: 14
Idle timeout: 2000
Number of servos: 8
Servo cycle time: 20000us
Pulse increment step size: 10us
Minimum width value: 50 (500us)
Maximum width value: 250 (2500us)
Output levels: Normal

Using P1 pins: 7,11,12,13,15,16,18,22
Using P5 pins:

Servo mapping:
0 on P1-7 GPIO-4
1 on P1-11 GPIO-17
2 on P1-12 GPIO-18
3 on P1-13 GPIO-27
4 on P1-15 GPIO-22
5 on P1-16 GPIO-23
6 on P1-18 GPIO-24
7 on P1-22 GPIO-25

Now if everything is working ok, you’ll be
able to send the command

pi@raspberry ~/PiBits/ServoBlaster/user $
echo 0=50% > /dev/servoblaster

This will send servo 0 (the one attached to
GPIO 4) to 50% of its range. Changing to
echo 1=20% > /dev/servoblaster will send
servo 1 to 20% of its 0 –>180 degree range.

 Products Education Build Buy

https://mime.co.uk/
https://mime.co.uk/products/
https://mime.co.uk/education/
https://mime.co.uk/build/
https://shop.mime.co.uk/

Next up we use Python and something called
TKinter (which should be installed on your
Pi already). Create a new file using your
favourite file editor (it should be GVIM -
it will make you more popular, stronger and
better looking). I called it MeArm.py. Add
the following code to it and save.

| #!/usr/bin/env python
from Tkinter import * #allows us to make a
GUI with TKinter
import os

root = Tk()

First Set Up the Servos

Going to use lists for

this

SNums = [0,1,2,3] #Numbers of the Servos we’ll
be using in ServoBlaster
SName = [“Waist”,”Left”,”Right”,”Claw”] #Names
of Servos
AInis = [90,152,90,60] #Initial angle for
Servos 0-3
AMins = [0,60,40,60] #Minimum angles for
Servos 0-3
AMaxs = [180,165,180,180] #Maximum angles for
Servos 0-3
ACurs = AInis #Current angles being set as
the intial angles
Step = 5
for i in range(4):
print(SNums[i],AInis[i],AMins[i],AMaxs[i],ACurs[i])

os.system(‘sudo
/home/pi/PiBits/ServoBlaster/user/servod –
idle-timeout=2000’) #This line is sent to
command line to start the servo controller

#inc listens for all key presses. On certain
presses in the if statements below it
either calls a process to add or subtract

 Products Education Build Buy

https://mime.co.uk/
https://mime.co.uk/products/
https://mime.co.uk/education/
https://mime.co.uk/build/
https://shop.mime.co.uk/

from the current servo angle.
def inc(event):
print “pressed”, repr(event.char)
if repr(event.char) == “‘a’”:
AAdd(0)
if repr(event.char) == “‘d’”:
ASub(0)

if repr(event.char) == “‘w’”:
AAdd(1)
if repr(event.char) == “‘s’”:
ASub(1)

if repr(event.char) == “‘j’”:
AAdd(2)
if repr(event.char) == “‘l’”:
ASub(2)

if repr(event.char) == “‘i’”:
AAdd(3)
if repr(event.char) == “‘k’”:
ASub(3)

def callback(event):
frame.focus_set()

def AAdd(Servo):
if ACurs[Servo] < AMaxs[Servo]:
ACurs[Servo] = ACurs[Servo]+Step
micro = (1000 + (ACurs[Servo] * 5.555))
micro = (1000 + (ACurs[Servo] * 8.3333))
print(ACurs[Servo],micro)
os.system(“echo %d=%dus > /dev/servoblaster”
% (SNums[Servo],micro))
else:
print “Max Angle
Reached”,SName[Servo],”Servo”

def ASub(Servo):
if ACurs[Servo] > AMins[Servo]:
ACurs[Servo] = ACurs[Servo]-Step
micro = (1000 + (ACurs[Servo] * 5.555))
micro = (1000 + (ACurs[Servo] * 8.3333))
print(ACurs[Servo],micro)
os.system(“echo %d=%dus > /dev/servoblaster”
% (SNums[Servo],micro))

 Products Education Build Buy

https://mime.co.uk/
https://mime.co.uk/products/
https://mime.co.uk/education/
https://mime.co.uk/build/
https://shop.mime.co.uk/

else:
print “Min Angle
Reached”,SName[Servo],”Servo”

frame = Frame(root, width=500, height=300)
boxtext = Label(root, text=”Click this box
for keyboard command of the MeArm. Use the a
d s w j l i and k keys for control.”)
boxtext.pack()
frame.bind(“<Key>“,inc)
frame.bind(“<Button-1>”, callback)
frame.pack()

root.mainloop()

Using a terminal or the command line type

pi@raspberry ~ $ python MeArm.py

All being well you should now have a pop up
box that tells you to click inside it to
control your MeArm!

Here’s a rough and ready video of the
results!

MeArm Robot Arm running on Raspberry Pi with Python

This tutorial is thanks to Carl Monk, who
did this nearly a year ago and has gone
further than I have here. His excellent work
can be found here.

 Products Education Build Buy

https://www.youtube.com/watch?v=FxqnOm5epFo
http://fortoffee.org.uk/2015/02/me-arm-and-me-raspberry-pi/
https://mime.co.uk/
https://mime.co.uk/products/
https://mime.co.uk/education/
https://mime.co.uk/build/
https://shop.mime.co.uk/

